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Abstract—Soil nutrient mapping has been implemented in
agriculture for the last 40 years. Ongoing economic
pressures in agriculture to increase crop yields while
sustaining farmer profitability demands in-depth
knowledge of soil nutrients. Spatial and temporal
variability of yield-limiting factors have been recognized
for a long time, and, with such information, farmers have
technologies to manage their fields site-specific. However,
farmers still tend to manage their fields uniformly because
it takes cost, labor, and money to assess and monitor soil
health conditions by traditional lab-based methods. We
have used a rapidly emerging hyperspectral sensing
technology to assess plant-available nutrient content in
soil, especially nitrogen, for the use of optimizing in-season
nitrogen management. The new and emerging technology
would empower farmers with data to help them make
better decisions to grow more profitable crops, protect the
environment, while growing more nutritious food

Keywords—Proximal spectroscopic reference, precision
agriculture, spatial data density

I. INTRODUCTION

Hyperspectral soil analysis provides a cost-effective
method to obtain far more data sets per acre (increased data
density per unit area) for a much lower net cost to the grower
compared to traditional soil analysis methods. The ability to
standardize and commercialize hyperspectral (visible and
near-infrared, 350-2500 nm) soil sensing is an effort that is
recognized by the FAO (Food and Agricultural Organization)
of the United Nations. This is due to its inexpensive method
and ability to give more spatial and temporal data per field
than traditional wet analysis in a timely manner [1] (Mahajan
et al. 2014, 499-522). Many studies have undertaken years of
testing to account for the variability of various soil tests and
nutrients that has a dramatic impact on the precision of

resulting recommendations [2,3,4]. The primary deficiency in
most soil analysis data is the lack of sufficient data to show
across-field variability and identify trends and areas of action.
Understanding where, when, and how much nitrogen or other
nutrients and in which form is required for crop growth
depend on field management, weather conditions, topography,
and soil health, and thus understanding spatial and temporal
variability of soil nutrient is one of the central themes for
precision agricultural practices [2,3,4]. Traditional soil testing
is too prohibitively expensive in terms of time investment and
cost, and many farmers have hesitations to regularly test soil
nutrients, particularly soil nitrogen, due to the high spatial and
temporal variability within a field.

Soil nitrogen is vulnerable to volatilization or leaching,
and the accuracy of testing has been under scrutiny from the
aspects of sampling methods, depths, and the handling of soil
samples for analysis. A key temperature requirement for
nitrogen volatilization of the sample is 67 degrees F. Data
quantities of granular raw data (more samples/unit area) are
required to generate accurate recommendations in a timely
fashion, resulting in improved precision applications [3].
Acquiring large data sets using traditional soil analysis is
prohibitively expensive. Soil test prices vary by lab, region,
and forms of nitrogen to be tested. In the U.S. alone, standard
soil tests may vary from $6.00 to $65.00 per sample and
generally testing nitrogen analysis require an additional cost of
$15-35.00 per sample [5]. Other countries have basic soil tests
costing upwards of $135 USD.

Hyperspectral soil sensing provides a lower cost solution
resulting in more data points, dramatically increasing
efficiency and precise input recommendations. Data resolution
being improved, cost is lowered; all while accuracy remains
highly correlated to lab results. "Big Data'' approaches are
often associated with multiple interrelated data sets
(weather/climate, chemical soil tests, satellite imaging,
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LIDAR, yield monitoring, etc.) being leveraged to understand
trends and more accurately predict soil properties. Yet,
significant computing power to model this data and validation
with diverse cropping systems data sets or "ground
truthing"are required to be precise and practical for accurate
prediction of soil health properties for precision agriculture.
To farmers and land managers, reliable data is essential to
manage performance and identify areas of improvement.

II. IDENTIFYING THE PROBLEM WITH TRADITIONAL SOIL

TESTING

Soil analysis and subsequent nutrient management have
always been an area pivotal to the productivity of cropping
systems. Accurate prescription maps are essential for
effective variable rate fertilization [2] . Grid soil sampling has
most frequently been used to develop these prescription maps
[3]. Past research has indicated several technical and economic
limitations associated with this approach. There has been a
need to keep the number of samples to a minimum (to control
cost) while still allowing a reasonable level of map quality.
However, the optimum grid density may depend on the
coefficient of variation in the field [6]. In areas where the
spatial distribution of soil properties is complex, much finer
grid densities than those currently used commercially are
required to produce accurate prescription maps. By
understanding these edaphic trends across the field using a
user-friendly and intuitive interface, farmers can specifically
target "problem" areas where yield potential is likely to be
high. Reference [3] has indicated that a common commercial
grid sampling scale of 100 m2 was grossly inadequate and that
soil sampling at greater densities only modestly improved
prediction accuracy which would not justify the increase in
sampling cost . Reference [4] demonstrated that spatial
interpolation was usually inappropriate for grid-sampled data
with limited sample size (n = 46) . This was further proved in
our 2021 study using 56 samples from one field in each of the
summer and fall testing periods. For most of their data sets,
the inability of accurate prediction could be attributed to either
spatially independent data, limited data, sample spacing,
outlier values, or unusually high sample variability probably
attributed to inadequate understanding of the source(s) of
variability. In fields with less than 100 samples only very
simple geostatistical interpretation methods such as inverse
distance are appropriate. Sample sizes of 100 to 500 are
needed for geostatistical methods such as kriging. Kriging is
one of several mathematical methods which involves a limited
set of sampled data points to estimate the value of a variability
over a continuous spatial field. Grid sampling at 20 m2 to 30
m2 scale is generally needed when applying site specific
management at a resolution of 20 m2. Areas larger than
8000m2 in size usually do not represent nutrient levels
precisely. The phase II results mentioned in this report will
show our findings on the relationship between the number of
samples and prediction accuracy and highlights that variations
in test methodology and practices will impact the correlation
to traditional methods  when reporting the test results.

III. METHODS FOR DETECTING SOIL NUTRIENTS USING

HYPERSPECTRAL SENSORS/SPECTRORADIOMETERS.
Soil spectroscopy uses advanced algorithms to convert

hyperspectral reflectance data into usable information to serve
the agricultural industry. A Malvern Panalytical ASD
FieldSpec was used to collect relevant data for the work in this
study. The equipment includes the hyperspectral sensor,
contact probe, computer, power cables, and fiber optic cable
(specifications in Table 1 below).

TABLE I. HYPERSPECTRAL SCANNER PROPERTIES OF MALVERN PANALYTICAL ASD
FIELDSPEC

Wavelength range 350-2500 nm

Resolution 3 nm @ 1400/2100 nm
Scanning time 100 milliseconds

Signal-to-noise ratio

Visible Near Infrared 9,000:1 @ 700 nm

Short Wave Infrared 1 1 9,000:1 @ 1400 nm

Short Wave Infrared 2 2 4,000:1 @ 2100 nm

Photometric noise

Visible Near Infrared 4.8 x 10-5 AU or 48 μAU @ 700 nm

Short Wave Infrared 1 4.8 x 10-5 AU or 48 μAU@ 700 nm

Short Wave Infrared 2 (350-1000 nm) 512 element silicon arrays

Short Wave Infrared 1
& 2 detectors

(1001-1800 nm) & (1801-2500 nm) Graded
Index InGaAs Photodiode, TE Cooled

The sensor must have a minimum operating range of 350
nm to 2500 nm to produce the most comprehensive results and
the best correlation to soil parameter values. Compressed
Polytetrafluoroethylene (PTFE) White reference tile is used as
a control to normalize reflectance data from the sensor at each
sampling event with a minimum number of scans to ensure
that the baseline is stable, and equipment is functioning within
acceptable parameters. There are abiotic factors that have a
strong impact on the precision and signal to noise level of data
acquired, including texture, water content, and mineralogy
(especially clay content and clay mineralogy) However these
factors can be very useful when creating a management
strategy. For instance: texture and clay type can give clues
about the availability of certain cations and can provide
information after being combined with pH data to inform
nutrient availability. The variability of water content across the
field when combined with texture and mineralogy data can
point to areas in the field that are more likely to cause water
stress or be particularly good at infiltrating or storing water or
provisioning nutrients into the soil solution.

These abiotic factors have been properly controlled for the
baselined, data can then be processed into heat maps and
actionable prescription maps. Hyperspectral technology allows
for quick and easy data processing at a cost-effective rate. The
sample results can be uploaded directly to the labs or farm
equipment for rapid decision-making and proactive farming
decisions while eliminating delays and chemical changes to
samples caused by the collection, shipping, and analysis
compared with traditional lab tests. It will serve the precision
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agricultural market by improving fertilizer application and
efficiency. This technology will help farmers increase and
reduce the variability of crop yields, optimize input costs, and
improve environmental protection by reducing unnecessary
fertilizer applications.

The initial proof of concept involved collecting soil
samples on-site in a 4-acre grid spaced throughout a field in
west central Illinois at the correct time in the agricultural cycle
resulting in all levels of Nitrogen (N), Potassium (K), and
Phosphorous (P) being present. The samples were stored in
sealed paper bags, then sent to Waters Agricultural
Laboratories to have the levels of N, P, K measured. The
samples were then sent to SpecTIR to be assessed in their lab
environment using spectrometry techniques. The samples were
separated into two equal groups, and the first group was then
air-dried. The moisture content of each group was not
measured. SpecTir utilized two hyperspectral sensors
(covering the range of 400-2400 nm) in controlled halogen
lighting conditions (700 Watts, approximating daylight levels
per square meter), and the samples were passed under the
sensors. The end result, after calibration of the sensors for
both white reflectance and dark (no reflectance) values and
spatial averaging over the sample area, was a spectral
signature for each of the 48 samples and at both the "as sent"
and the "air dried" water levels.

IV. RESULTS AND DISCUSSION

A. Trial One in 2021 – One field in Minnesota – The
Promise of Hyperspectral Approaches

A phase I trial with corn production operation in one field
resulted in our urea application for improved yield response
(2021). It was determined from this study that the use of 27
samples is too few to build good models. Improvement may be
dependent on a larger sample size or other co-variables such as
climatic conditions and sample handling. The testing of deeper
samples was further substantiated by factoring in the weather
data for sampling at a greater depth in the fall during cooler
temperatures showed a higher correlation to lab testing and a
lower root mean squred error (RMSE) value with a validated
explanation that shallow- incorporated urea is subject to
volatilization losses as ammonia gas.
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B. Trial Two – Seven Fields in Minnesota – Increase
sample size for better model building

An internal trial was conducted on-farm with a corn
production operation in Minnesota where soybean was
planted a year before. In a previous study, it was determined
that the zoned areas did not coincide with actual nutrient
levels across the field [7]. Using a cost-effective way to
determine the precise levels of nitrogen application and
site-specific distribution is essential to a farmer’s cost, yield,
and potential environmental impact from excess nutrient
overload on the surface and into groundwater. In an
independent study on the Marshall field trial discussed above,
the agronomist in charge was able to make a better
determination of application as the best solution to lagging
yields. With the variable application, the farmer was able to
save $21,879 in input costs and $1,739.75 in lab analysis.
Identifying the area of need across the field enabled greater
yields and increased overall crop production.

2018 – 24-point difference in CPI (crop
productivity index) values

2021 – 4-point difference (improvement) in CPI
values with increased yields

2022 –2.5-point difference(improvement) in CPI
values with increased yields

The results from the seven fields resulted in promising results.
The Minnisota study had larger variations in correltion from
our original test methods in this study which could have been
caused by the change in test method from air dried in the
preliminary study to heat dried and sieved in the laboratory for
the phase I and phase II studies. There were large value
variations between samples, fields, and temperature
conditions. The model building plan was designed to
investigate differences in weather conditions (ambient field
temperature) and sample depths. The following model plan
was used to compare the best practice for creating models and
test methodology.

Models were generally reasonable under the post-processing
methods used in sample preparation. The results were
generally poor predictions when using one condition
(Summer, Fall, 0–6”,6–24”) to predict another condition. The
result from 0–6-inch samples to 6–24 inch samples provided
improved results over those created from season to season
alluding to ambient air temperature effects on nitrogen
readings. The use of models created from all fields combined
does a reasonable job of predicting individual seasons or
conditions.

Model for 06 Summer 15 Terms

Model for 06 Fall 15 Terms
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Model for 6-24 Summer 15 Terms

Model for 6-24 Fall 15 Terms

V. SUMMARY

Nitrogen hyperspectral soil sensing is essential to develop
a cheaper and faster testing method with accuracy. The
technology continues to show great potential for testing
nitrogen for better application accuracy and further usefulness
in reducing input costs for farmers and reducing nutrient
overload in our waterways through integrated precision
applications.

Testing conditions for volatile substances like nitrogen
should be further investigated to reduce user error and
variations caused by volatility as a result of field conditions.
Using the hyperspectral soil sensing approach can be a
cost-effective way to survey the relative levels of essential
macro and micro-nutrients and determine if certain areas of
the field need amendment. Overall resulting in conserving
resources as only the areas that need attention will be
addressed. Improving the method and decision scenarios to
improve testing accuracy and granularity is the main promise
of this technology.

Phase III infield testing using spectroscopy, west lab
chemistry, and post-processed spectroscopy is essential to

eliminate the variables of accuracy due to sample degradation
that results from nitrogen volatility at temperature. Evaluating
nitrogen status in soil before planting and during the growing
season has benefits to prescribing nitrogen only required for
in-situ crop growth. The ability to use hyperspectral data for
more detailed mapping of nutrients can also save farmers
money and time by defining the right place, right amount, and
right type of fertilizer needed in a given area based on more
detailed nutrient application maps. Years of trials in different
regions, different soil textures, mineralogy, and climate would
be important to prove the infield use of assessing soil nitrogen
availability.

ACKNOWLEDGMENT

We extend our thanks to the Department of Water and Soil at
the University of Minnesota for participating in the research.

REFERENCES

[1] Mahajan, G. R., R. N. Sahoo, R. N. Pandey, V. K. Gupta, and
Dinesh Kumar. “Using Hyperspectral Remote Sensing Techniques
to Monitor Nitrogen, Phosphorus, Sulphur and Potassium in Wheat
(Triticum Aestivum L.).” Precision Agriculture 15, no. 5 (March 9,
2014): 499–522. https://doi.org/10.1007/s11119-014-9348-7.

[2] Ferguson, R. B., G. W. Hergert, J. S. Schepers, C. A. Gotway, J. E.
Cahoon, and T. A. Peterson. “Site-Specific Nitrogen Management
of Irrigated Maize.” Soil Science Society of America Journal 66,
no. 2 (2002): 544. https://doi.org/10.2136/sssaj2002.0544.

[3] Mueller, T.G., F.J. Pierce, O. Schabenberger, and D.D. Warncke.
2001. Map quality for site-specific fertility management. Soil Sci.
Soc. Amer. J. 65:1547-1558.

[4] Schloeder, C. A., N. E. Zimmerman, and M. J. Jacobs.
"Comparison of methods for interpolating soil properties using
limited data." Soil science society of America journal 65, no. 2
(2001): 470-479.

[5] Schimmelpfennig, David, and Robert Ebel. “Sequential Adoption
and Cost Savings from Precision Agriculture.” Journal of
Agricultural and Resource Economics 41, no. 1 (2016): 97–115.
http://www.jstor.org/stable/44131378.

[6] Gotway, Carol A., Richard B. Ferguson, Gary W. Hergert, and
Todd A. Peterson. “Comparison of Kriging and Inverse-Distance
Methods for Mapping Soil Parameters.” Soil Science Society of
America Journal 60, no. 4 (August 1996): 1237–47.
https://doi.org/10.2136/sssaj1996.03615995006000040040x.

[7] Koch, Geoffrey, Kim Flemming, Penelope Nagel, and Nicholas
Schottle. “You Can't Manage What You Don't Measure.”
International Society of Precision Agriculture, 2022.

2023 IEEE Conference on Technologies for Sustainability (SusTech)

5

http://www.jstor.org/stable/44131378

