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Diffuse reflectance spectroscopy has been extensively employed to deliver timely and cost-effective predictions of 

a number of soil properties. However, although several soil spectral laboratories have been established world­

wide, the distinct characteristics of instruments and operations still hamper further integration and interoper­

ability across mid-infrared (MIR) soil spectral libraries. In this study, we conducted a large-scale ring trial 

experiment to understand the lab-to-lab variability of multiple MIR instruments. By developing a systematic 

evaluation of different mathematical treatments with modeling algorithms, including regular preprocessing and 

spectral standardization, we quantified and evaluated instruments' dissimilarity and how this impacts internal 

and shared model performance. We found that all instruments delivered good predictions when calibrated 

internally using the same instruments' characteristics and standard operating procedures by solely relying on 

regular spectral preprocessing that accounts for light scattering and multiplicative/additive effects, e.g., using 

standard normal variate (SNV). When performing model transfer from a large public library (the USDA NSSC­

KSSL MIR library) to secondary instruments, good performance was also achieved by regular preprocessing (e. 

g., SNV) if both instruments shared the same manufacturer. However, significant differences between the KSSL 

MIR library and contrasting ring trial instruments responses were evident and confirmed by a semi-unsupervised 

spectral clustering. For heavily contrasting setups, spectral standardization was necessary before transferring 

prediction models. Non-linear model types like Cubist and memory-based learning delivered more precise es­

timates because they seemed to be less sensitive to spectral variations than global partial least square regression. 

In summary, the results from this study can assist new laboratories in building spectroscopy capacity utilizing 

existing MIR spectral libraries and support the recent global efforts to make soil spectroscopy universally 

accessible with centralized or shared operating procedures. 

1. Introduction

Soil science has a data problem. There is simply not enough labo­
ratory capacity to meet the many needs for timely and accurate infor­
mation on basic soil properties. The application of diffuse reflectance 
spectroscopy (DRS) to soil and environmental sciences is rapidly 
maturing, and for soils has already contributed to generating quantita­
tive information (Frei and MacNeil, 2019; Nocita et al., 2015; Viscarra 
Rossel et al., 2022). DRS can increase laboratory throughput at a fraction 
of the cost of traditional wet chemistry methods (Seybold et al., 2019). 
But in order for DRS to be successfully deployed in laboratory-based 
conditions, representative spectral libraries and the appropriate data 
measurements are necessary (Shepherd et al., 2022). 

Soil spectral libraries along with corresponding laboratory mea­
surements of several attributes (reference values) have been established 
worldwide, spanning from very localized datasets to national or conti­
nental databases (Ramirez-Lopez et al., 2019; Sumrnerauer et al., 2021; 
Viscarra Rossel et al., 2016). These libraries often have distinct features 
that require significant preprocessing and harmonization in order to 
make the data consistent and useful before their integrated use (Francos 
et al., 2023; Minasny et al., 2009). Special attention to this point has 
been made by the Global Soil Partnership (GLOSOLAN) of the Food and 
Agriculture Organization (FAO) from the United Nations and its Global 
Soil Laboratory Network initiative on soil spectroscopy (FAO GLOSO­
LAN, 2023) and the Institute of Electrical and Electronics Engineers 
(IEEE) Standards Association (AS) P4005 working group, which aims to 
define the standards and protocols for soil spectroscopy (IEEE SA, 2023). 

The main sources of variability when merging or working across soil 
spectral libraries come from the precision and reproducibility of soil 
analytical data used to calibrate spectral data and the collected spectra 
themselves. Laboratory reference data used to calibrate models from 
spectra are affected by cumulative issues on sample preparation, sub­
sampling, and instrument readings (Shepherd et al., 2022). Many lab­
oratories routinely monitor their analytical precision over time by using 
internal or external standard samples. But high variability between 
replicates may still remain an obstacle as reported by FAO GLOSOLAN in 
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a global ring experiment of soil analytical determination (Suvannang 
and Hartmann, 2019). High intra and interlaboratory variability was 
found in a Forest Soil Survey project when three soil samples were 
shared across 52 laboratories in European countries (Cools et al., 2004). 
Although the same reference analytical methods were run on ring trial 
samples, it was not possible to link the causes of variation with the 
metadata provided by the participants. In a recent study, DRS was tested 
as a tool for routine use by commercial laboratories for internal quality 
control and as a complementary method for soil property estimation 
(Poppiel et al., 2022). The study suggested that spectral variations can 
be successfully employed for identifying analytical outliers with unsu­
pervised clustering, and some laboratories can use DRS in their daily 
routine to reduce costs of determination, especially for soil particle size 
distribution and organic carbon content. Moreover, the analysis of 
spectral data can indicate inconsistencies in wet laboratory analyses, 
and thus has a quality evaluation importance. 

A remaining research gap in soil spectroscopy is to quantify the 
variation in spectral responses across different instruments and the in­
fluence of this variation on predictions made using centralized or com­
bined soil spectral libraries. A seminal study found large differences 
among the DRS measurements of three different instruments across the 
visible, near and shortwave infrared region (VNIR-SWIR, 400-2500 nm 
[25000-4000 cm-I]) (Pimstein et al., 2011), whiclI formed the bases of 
the Internal Soil Standard (ISS) method later recommended for this 
spectral region of interest (Ben-Dor et al., 2015). Gholizadeh et al. 
(2021) found that the ISS method was able to mostly resolve differences 
between four VNIR-SWIR instruments when predicting soil organic 
carbon content. On the other hand, although DRS with Fourier­
Transform in the mid-infrared region (FT-MIR, 2500-25000 nm 
[4000-400 cm-I]) has been promoted as an accurate method to inter­
pret and predict soil properties (Ng et al., 2022; Sanderman et al., 2020), 
there is a lack of studies assessing different instruments as part of a large­
scale interlaboratory comparison using FT-MIR. Previous studies have 
found contradicting results when transferring FT-MIR prediction models 
from centralized soil spectral libraries to a limited number of in­
struments and smaller datasets. Dangal and Sanderman (2020) found 
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that spectral standardization was necessary to deliver unbiased pre­
dictions for a test set of different geographical origin despite reaching 
good-to-excellent results without standardization. In turn, Sanderman 
et al. (2023) suggested that calibration transfer may not be necessary 
when they transferred a model from the USDA National Soil Survey 
Center Kellogg Soil Survey Laboratory (NSSC KSSL) FT-MIR spectral li­
brary to a localized spectral library collected with a different instrument 
model from the same manufacturer, with spectral preprocessing being 
enough to handle the spectral variability. 

Thus, reducing spectral variations through spectra preprocessing is 
extremely important because FT-MIR laboratory measurements are still 
subject to particle size, light scattering, and multicollinearity issues 
(Barnes et al., 1989), especially when different instrumentation and 
operating procedures may change wavelength position, absorption 
shape, and albedo intensity (Pimstein et al., 2011). Spectral standardi­
zation or calibration transfer has been promoted in FT-MIR soil spec­
troscopy but only more recently this strategy has been further 
investigated (Pittaki-Chrysodonta et al., 2021). Similarly, with the 
widespread use of machine learning and chemometrics algorithms 
(Barra et al., 2021), some model architectures may be less sensitive to 
spectral variations due to their nature of handling large and complex 
datasets. 

In this study, we conduct to our knowledge the first large-scale ring 
trial experiment to better understand the lab-to-lab variability of mul­
tiple soil spectroscopy laboratories from around the world. The goal of 
this study is to conduct a systematic evaluation of different spectra 
preprocessing and modeling algorithms for reducing instruments' vari­
ability in order to deliver better predictions from DRS FT-MIR. Simul­
taneously, the shared standard samples may form the basis of building 
calibration transfer among soil spectroscopy laboratories, especially in 
relation to the centralized USDA NSSC KSSL FT-MIR soil spectral library 
that can be leveraged to calibrate more robust prediction models. 

2. Material & methods

A ring trial experiment is an interlaboratory comparison where the 
same set of samples are prepared using standard procedures and shared 
across multiple laboratories. The goal of such experimental design is to 
evaluate the reproducibility of an analysis (accuracy/bias) across the 
participant laboratories (Van Reeuwijk and Houba, 1998). However, the 
same set of samples can also be used for internal evaluation of the 
repeatability (precision/variance) as part of an quality control protocol. 
With the quantification of these sources of errors (bias and variance), 
one can ultimately propose solutions for better compatibility by sharing 
best practices among the laboratories network. In soil science, routine 
and research laboratories have been extensively tested as part of profi­
cient tests programs (Cools et al., 2004; Rayrnent et al., 2000; Wolf and 
Miller, 1998). In soil spectroscopy, however, this type of experimental 
setup has not been used in routine laboratories and a few attempts are 
described in the literature (Ben-Dor et al., 2015; Gholizadeh et al., 2021; 
Pimstein et al., 2011). In the following subsections, we describe how we 
established a large-scale soil spectroscopy ring trial network to evaluate 
FT-MIR instruments and laboratories. 

2.1. Soil samples 

Sixty soil samples that are routinely analyzed at the USDA NSSC 
KSSL (hereafter KSSL) and used for process quality control were pre­
pared as fine earth fraction (FE, i.e., air-dried and sieved < 2 mm) and a 
finely milled fraction (FM, which is FE run 3 min in a Retsch Mixer mill 
reaching < 180 µrn) at Woodwell Climate Research Center for later 
distribution to ring trial participants. Additionally, ten samples from the 
Soil Science Society of America's North American Proficiency Testing 
Program (NAPT) were also included in the package and prepared by the 
same approaches. Using a riffle-splitter, aliquots of about 15 g of FM 
fraction were divided out for each sample into 20 ml glass scintillation 
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vials. These sets of 70 samples prepared to FM fraction were then 
shipped to the 20 participating laboratories (Fig. la). 

In this study, OC content (gravimetric percentage, %), clay content 
(gravimetric percentage, %), pH (loglO units), and exchangeable po­
tassium (K, crnolc kg-1) were chosen as soil properties of interest
because they usually present variable predictive model performance and 
have distinct relationships with absorbance patterns in the MIR spectra 
(Dangal et al., 2019). NAPT OC is the only property that does not 
necessarily have the same method as KSSL, with its reference values 
being defined as the median of multiple measurements and methods. For 
the KSSL soil set, OC was estimated by OC = TC -0.12CaCO3, with TC 
measured by dry combustion and CaCO3 determined by a manometer. 
Clay content was measured using the pipette method of particle size 
analysis. pH was measured in a 1:1 soil-to-water solution using an ion­
selective electrode. Finally, exchangeable K was determined using 
anirnonium acetate (pH 7) (Soil Survey Staff, 2022). 

For data analysis, the two soil sets were pooled together to form a 
larger dataset (n = 70) and a potential incompatibility between KSSL 
and NAPT analytical results for total carbon (TC) and estimated organic 
carbon (OC) was verified by running the KSSL analytical procedures 
(Soil Survey Staff, 2022) (Fig. lb). The results revealed a substantial 
correspondence of KSSL analytical procedures (R2 

>= 0.99) to median 
NAPT values for TC and OC, confirming that pooling both datasets 
together will not yield systematic biases in further analysis (Supporting 
information Fig. SI). 

2.2. Instrwnents and spectra preprocessing 

Twenty instruments belonging to different organizations returned 
FT-MIR spectra for the 70 ring trial samples (Fig. lb). The instruments 
span diverse manufacturers, models, internal optics, and sampling ac­
cessories (Supporting information Table SI and Table S2). These met­
adata were used to group similar instruments into clusters to investigate 
potential drivers of the instruments' variability (see the 'Statistical 
analysis and comparisons' section). While spectral range varied between 
instruments, most instruments collected spectra at 4 cm -l resolution but 
the number of co-added scans varied from 10 to 64. With variable 
spectral range, format, and resolution, all spectra were transformed to 
absorbance (A = log10 [1/R]), truncated to 4000-650 cm-1, and resam­
pled to 2 crn-1 interval using splines (Stevens and Ramirez-Lopez,
2022). 

MIR spectra were processed as i) original return (raw), ii) baseline 
offset correction (BOC), iii) Savitzky-Golay (SG) 1st derivative 
(SGlstDer), iv) standard normal variate (SNV), v) SNV followed by 
SGlstDer (SNV + SGlstDer), and vi) spectral space transformation (SST) 
after SNV. BOC was implemented in this paper as an operation that finds 
and subtracts the minimum value of each sample spectra across the 
whole spectral range, bringing the spectral line to the origin (zero) at the 
position of the minimum value. SGlstDer is a polynomial moving­
window function that moves across the spectra with a specified win­
dow size and a differentiation order. In this study, it was implemented 
with a second-order polynomial function, a half-window size of 11

cm-1, and a first-order derivative (Dotto et a!., 2018). It can also work as
a smoothing algorithm with a zero differentiation order. This smoothing
operation was implemented before applying BOC and SNV with a half­
window size of 11 cm-1. Derivatives can remove both additive and
multiplicative effects in the spectra, enhance absorption features, and
reduce the baseline offset. SNV is a row normalization technique that
centers (to mean 0) and scales (to 1 standard deviation) the spectra, not
over the columns of a matrix. This preprocessing changes both the range
of values and the amplitude of the curves and is intended to correct the
scattering of light. The combination of SNV and SGlstDer was made to
check for further improvements in handling scattering and additive/
multiplicative effects. SGlstDer and SNV preprocessing strategies were
implemented using the prospectr R package v0.2.6 (Stevens and Ramirez­
Lopez, 2022), while the other pretreatments were customized within the
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Fig. 1. A) Global laboratories participating in the diffuse reflectancemid-infrared (MIR) ring trial. b) Overview of the main steps employed in this study. 

R statistical programming language v4.2.0 (R Core Team, 2022). A 

visualization comparison is provided in the Supporting information 

Fig. S3. 

Different from regular spectral preprocessing, SST is a spectral 

standardization method that requires the same set of samples to be 

shared across different instruments to estimate a transformation matrix. 

Ring trial samples are intended to work as standard samples for cali­

bration transfer, but in this paper the original full set (n = 70) had to be 

split into two subsets defined as spectral standardization (RT SST, n = 

50) and holdout test (RT test, n = 20) sets (Fig. 2) for proper evaluation

of modeling results. Kennard-Stone deterministic sampling algorithm

(Kennard and Stone, 1969) was run on SNV KSSL spectra to subset 50

samples, an optimal number for spectral standardization defined as per

the previous analysis of Sanderman et al. (2023). Before the subsetting,

the KSSL SNV spectra were compressed by principal component analysis

(PCA) to retain 99. 99 % of the original variability.

Spectral space transformation is a relatively new method and was 

first described by Du et al. (2011). Its adoption in soil spectroscopy is 

very limited, although some recent studies have indicated that SST 

outperforms other spectral standardization methods, i.e., direct stan­

dardization (DS) and piecewise direct standardization (PDS), especially 
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when a small number of standard samples are available to be shared 

across laboratories or instruments (Pittaki-Chrysodonta et al., 2021; 

Sanderman et al., 2023). The method is based on the transformation of 

spectra of a secondary instrument onto the spectral space of the primary 

one. The transformation matrix is estimated with singular value 

decomposition using the same algorithm as employed in the PCA. 

Similar to PCA, one can determine the number of orthogonal features to 

create a new dataset with scores. In this study, SST was set to retain 

components explaining 99.99 o/o of the original cumulative variance and 

was implemented using the R statistical programming language. The 

primary instrument set for SST was the Bruker Vertex 70 at the KSSL 

(instrument #16), because we wanted to be able to use predictive 

models built from its large public library. All the other ring trial in­

struments were treated as secondary instruments and transformed to the 

KSSL space. Detailed information about SST can be found in Pittaki­

Chrysodonta et al. (2021). 

2.3. Modeling framework 

The instruments were first compared regarding their internal pre­

diction capacity using repeated cross-validation. This analysis was 
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Fig. 2. Principal component analysis of 70 ring trial (RT) samples (spectral space transformation set [RT SST] or holdout test set [RT test]) projected onto the Kellogg 
Soil Survey Laboratory (KSSL) mid-infrared (MIR) spectral library (subset with n = 15,000, small dots) used for calibration in the transfer model mode. The spectra 
were preprocessed by Standard Normal Variate. 

proposed to evaluate whether an instrument can deliver reliable results 
considering its specifications and spectral characteristics. Using the 
whole ring trial set (n = 70) and the standard chemometric algorithm of 
partial least squares regression (PLSR), each instrument had its internal 
performance evaluated by IO-fold cross-validation repeated 10 times 
using the pis package v2.8-l in R (Liland et al., 2022). An outcome of 
this analysis is that the results may indicate a baseline performance for 
comparison with the model transfer mode. 

The main interest of this study, in tum, was to assess the performance 
changes from model transfer, i.e., applying a fitted model of a primary 
soil spectral library onto the different spectra versions generated by each 
ring trial instrument. This exercise emulates the challenges of soil 
spectroscopy integration and the use of legacy soil spectra libraries. 
Model calibration was made using a subset (n = 15,000, Fig. 2) of the 
large KSSL MIR spectral library that has been employed in previous 
studies (Sanderman et al., 2021), which is the instrument #16 (Table SI 
and S2). The KSSL MIR spectral library has been steadily increasing in 
size and spectral diversity. It is one of the largest publicly available soil 
spectral libraries, representing the major soil types of the USA and other 
territories (Ng et al., 2022; Wijewardane et al., 2018). In combination 
with additional datasets, it is being used to develop global estimation 
services of soil properties (Shepherd et al., 2022) and others are working 
to integrate the KSSL with regional spectral libraries already developed 
by the participating laboratories of this ring trial. All the subsequent 
analyses of this study are conducted considering the KSSL MIR as the 
primary soil spectral library for model calibration. 

Before model fitting, soil reference data were checked for asym­
metrical distribution using skewness and kurtosis metrics. Soil proper­
ties falling outside the range of -3 and 3 for skewness or kurtosis were 
natural-log transformed to match a normal probability distribution 
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function (PDF), which was the case of OC and exchangeable K. Predic­
tion performance metrics were calculated in the natural-log space for 
these soil properties, therefore error metrics were not displayed in the 
original measurement unit. A statistical description of the ring trial soil 
samples is provided in Supporting information Table S3 and Table S4, 
while the PDFs of the three subsets (KSSL calibration set, RT SST set, and 
RT test set) are visualized in Supporting information Fig. S2. 

Combining with the four assessed soil properties and six spectral 
preprocessing steps, three modeling algorithms (PLSR, memory-based 
learning (MBL), and Cubist) were evaluated in terms of dealing with 
the shifts between calibration and application domains in the model 
transfer mode. PLSR is widely used in the chemometrics field as it is a 
multidimensional method that handles the collinear nature of spectral 
measurements (Barra et al., 2021; Soriano-Disla et al., 2014). It is 
considered a global fitting method that maximizes both the target and 
covariate variance by linearly combining decomposed orthogonal latent 
features, which can be optimized by defining the number of factors 
explaining much of the original variance. In addition, with PLSR it is 
possible to estimate the variable importance in the projection (VIP) 

metric to verify the influence of specific wavelengths across the whole 
modeling spectrum (Chong and Jun, 2005; Rossel and Behrens, 2010). 
MBL, on the other hand, is a local fitting method that searches for the 
closest subset of samples (neighbors) of a given calibration set before 
model fitting, with each sample having its model fitted by an algorithm 
(Ramirez-Lopez et al., 2013; Saul and Roweis, 2003). 

In this paper, MBL was implemented with the aid of the resemble R 
package v2.2.l (Ramirez-Lopez et al., 2022) by setting the MBL's 
dissimilarity threshold (k_diss) ranging from 0.5 to 3.0, with 0.5 in­
crements, resulting in 6 options that are truncated by a minimum and a 
maximum number of neighbors as 50 and 200 (k_range). MBL's local fit 
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was made by weighted-average PLSR (local_fit_wapls) with a minimum 

and a maximum number of orthogonal factors defined between 5 and 20 

(min_pls_c = 5, max_pls_c = 20), respectively, and being internally 

optimized by leave-nearest-neighbor-out cross-validation (vali­

dation_type = "NNv" within mbl_control). Three different dissimilarity 

methods (diss_method) were used: 'cor', 'pis', and 'pea'. Considering the 

large number of hyperparameters that can be set for MBL, especially 

from the combination of diss_method and k_range, the resulting pre­

dictions from 18 models were ultimately averaged. This operation can 

be viewed as an ensemble MBL as the hyperparameters impact only the 

subsetting of samples selected as neighbors (resample), as the model 

optimization is automatically done by NNv. 

Lastly, the tree-based algorithm Cubist (Quinlan, 1992, 1993) was 

also tested as it has been routinely used in soil spectroscopy studies 

(Barra et al., 2021; Li et al., 2022; Sharififar et al., 2019). This algorithm 

takes advantage of a decision-tree splitting method but fits linear 

regression models at each terminal leaf. It also uses a boosting mecha­

nism (sequential trees adjusted by weights) that allows the growth of a 

forest by tuning the number of committees. In addition, it corrects the 

final prediction by the nearest neighbors' influence. To control potential 

model overfitting due to multicollinearity and large dimensionality 

before fitting the models, principal component loadings fitted with the 

KSSL calibration library that retained 99. 99 % of the original cumulative 

variance were applied to all ring trial instruments' preprocessed spectra 

to reduce the original feature size. 

All the prediction algorithms were fine-tuned by hyperparameter 

grid searching of the lowest root mean square error (RMSE) using 10-

fold cross-validation. The modeling pipeline was implemented in the R 

software (version 4.2.0) following tidymodels framework (Kuhn and 

Wickham, 2020) and several packages, i.e., pis v2.8-1, Cubist v0.4.1, 

resemble v2.2.l, recipes vl.0.1, and yardstick vl.0.0 (Kuhn and Quinlan, 

2022; Kuhn and Vaughan, 2022; Kuhn and Wickham, 2022; Liland et al., 

2022; Ramirez-Lopez et al., 2022). Internal performance parameters of 

the KSSL library evaluated by 10-fold cross-validation with their fine­

tuned hyperparameters (PLSR and Cubist) are provided in Supporting 

information Table S5. 

2.4. Statistical analysis and comparisons 

Variability across instruments was first assessed with exploratory 

data analysis. For this, spectral visualizations of selected instances 

measured by the 20 different instruments allowed their comparison 

before and after preprocessing, indicating if preprocessing can help 

reduce the instruments' variability. The spectra were also analyzed in 

terms of spectral dissimilarity by defining the KSSL ring trial spectra as 

the reference and calculating the Euclidean distance, which was esti­

mated with the aid of the resemble R package v2.2.1 using the 'f_diss' 

function by centering and scaling the spectral matrices (Ramirez-Lopez 

et al., 2022). Each sample yielded a dissimilarity value, which was 

visually compared across instruments. 

The performance of both internal cross-validation and model transfer 

was evaluated by goodness-of-fit metrics including Lin's concordance 

correlation coefficient (CCC), root mean square error (RMSE), average 

error (bias), and the ratio of performance to the interquartile range 

(RPIQ) using the yardstick R package vl.0.0 (Kuhn and Vaughan, 2022). 

However, the visual comparisons and statistical analysis were made 

using solely Lin's CCC, with the other metrics being provided in the 

Supporting information. Lin's CCC is a robust metric that not only en­

compasses overall accuracy but also the bias or deviation of a model 

from the perfect 1:1 line between observed and predicted values. In 

addition, the visualizations based on Lins' CCC are standardized with a 

scale ranging from -1 to 1 (Lin, 1989). 

For interpreting the effects of preprocessing and model selection, 

pairwise comparisons were employed by using permutation tests of Lin's 

CCC values. Permutation tests are robust because they do not require 

rigid statistical assumptions (distribution-free) and allow estimating the 
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effect size of any statistics (Hollander et al., 2013). In this analysis, Lin's 

CCC values from all the modeling combinations were pooled together 

and grouped by the categories of a factor of interest. For a given pair of 

categories being tested (e.g., SNV versus SGlstDer preprocessing), the 

original effect size ( true difference between a statistic of the two sam­

ples) is compared with several estimates of effect size after randomly 

shuffling the pair of samples. The null hypothesis of getting by chance 

the effect holds if the final proportion (p-value) of the permuted statistic 

is higher than a significance level. The effect size was measured on the 

median statistics using 10,000 simulations. With a matrix of all pairwise 

p-values assessed at a 5 % significance level, the factor levels were

categorized by compact letter displays (Graves et al., 2019).

Lastly, a metadata clustering analysis was conducted to investigate 

possible associations of instruments' characteristics to their final pre­

diction performance. K-means clustering was first performed on raw 

spectra compressed by principal component analysis by testing up to 20 

clusters. The optimal number of clusters was determined using the 

Elbow method with the Akaike Information Criterion (Dotto et al., 2020; 

Safanelli et al., 2021). The proportion of samples belonging to a cluster 

was estimated for each instrument and the cluster with the majority was 

defined as representing the instrument. After that, two instruments were 

manually adjusted based on instrument characteristics and the overall 

performance from the transfer model approach, as they have fallen into 

separate groups not sharing similar performance characteristics. To help 

in the interpretation, correspondence analysis was employed to explore 

the relationship between metadata characteristics and the clusters (both 

qualitative variables) (Viscarra Rossel et al., 2016). The chi-square test 

evaluated whether there was a significant association between the cat­

egories of the two variables at a 5 % significance level. The relationships 

were summarized and interpreted with asymmetrical biplots by dis­

playing metadata information (columns) over the cluster space (rows) 

(Greenacre, 2016). 

3. Results

3.1. Spectral dissimilarity 

Spectral response varied considerably across the 20 instruments from 

this ring trial experiment (Fig. 3a-c). Most of the differences are visible 

in terms of baseline offset, with slight changes over the spectral ab­

sorption features. However, a few instruments (#9 Thermo Fisher 

Nicolet, and #13 Perkin Elmer FT-IR II) had contrasting spectral vari­

ations, with their spectral curve being more compressed compared to the 

other instruments (Fig. 3a). When the samples were preprocessed by 

SNV, much of the spectral dissimilarities seen with raw were largely 

reduced (Fig. 3b). Despite being a promising correction algorithm, the 

remaining visible dissimilarity of some instruments with SNV demanded 

further processing to properly align the spectral curves (Fig. 3c). 

The variations previously identified with raw or SNV were largely 

reduced by SST (Fig. 3c). Considering that instrument #16 (Bruker 

Vertex 70) is used as the reference spectra, the Euclidean dissimilarity 

between each instrument and the KSSL first assessed in the raw spectra 

(overall median dissimilarity of 1.53) decreased by about 147 o/o after 

applying SNV (overall median dissimilarity of 0.62) and 247 o/o after 

applying SST (overall median dissimilarity of 0.44) (Fig. 3d-f). The 

decrease from SNV to SST, however, varied from 150 o/o (instrument 8) 

to -30 o/o (instrument 10). Comparing the improvement between the 

raw spectra to SST pretreated spectra, the dissimilarity for instrument 

#1 (Bruker Tensor II) increased, while instruments #1 (Bruker Tensor 

II), #10 (Bruker Vertex 70), #17 (Bruker Invenio R, and #20 (Bruker 

Alpha I) showed a negative effect from SNV to SST. Similarly, some soil 

samples were misaligned after applying SST (Fig. 3f), with differing 

sample ids found for those having an Euclidean distance higher than 1.5. 

Other preprocessing visualizations are provided in Supporting infor­

mation Fig. S4. 



J.L. Safanelli et aL 

b 

� 2 
·c 

0 oi 10 
= a, 
g 0 "1 .0 
0 <fl .0 <(

C 

� 2 $ 
·c ::,

0 1 oi 0 
= a, 
g 0 "1.0
0 1l -1 <( 

r--
4000 3600 

-----,-----
4000 3600 

4000 3600 

3000 2400 1800 Wavenumber (cm-1)

3000 2400 1800 Wavenumber (cm-1)

3000 2400 1800 Wavenumber (cm-1)

------,----
1200 650 

r------. 
1200 650 

1200 650 

d 

3 

a,(.) 
.£9 2 <fl 
'6 a, 
g1 (.) 

e 

a,(.) C 

0 

3 

.£9 2 <fl 
'6 Crn a, 
�1 ::,w

f 

a,(.) C 

0 

3 

.£9 2 
'6 Crn a, 
g1 (.) ::, w

0 

� 

9 

.$�1'?$$ 

� � 

Ep 

1 2 3 4 5 6 7 8 9 10 11 12 Instrument 

Geoderma 440 (2023) 116724 

g��E?oe� 
13 14 15 17 18 19 20 

'----T-r---r---r----,--r----,---r---,r-----r---r---r----,--r----,---r-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 Instrument 

.-------r--T ,-------r--r 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 Instrument Fig. 3. Spectral variation of sample 19 for the raw (a), standard normal variate (SNV) (b), and spectral space transformation (SST) (c) spectra. Each spectral curve represents one ring trial participant laboratory. Euclidean dissimilarity of ring trial test samples (n = 20) for raw (d), SNV (e), and SST (f) pretreatments considering instrument 16 (Bruker Vertex 70 from the Charles E. Kellogg Soil Survey Laboratory - KSSL) as the reference spectra. 

3.2. Internal calibration performance 

Soil organic carbon was the soil property that achieved the best in­ternal cross-validation performance with PLSR (Lin's CCC, overall me­dian 0.95 ± IQR 0.02) (Fig. 4). Soil pH ranked second and reached a stable performance regardless of the MIR instrument and preprocessing employed (overall median 0.91 ± IQR 0.05). This stable performance among instruments was also observed for exchangeable K (overall IQR 0.05), although its results were the worst among the tested soil prop­erties (overall median Lin's CCC 0.73). Clay content had the highest variable performance among the MIR instruments, being also more sensitive to spectra preprocessing (overall median 0.81 ± IQR 0.14). There were only small differences in OC model performance for the different preprocessing methods, except for BOC where the performance for five instruments was substantially lower than for other preprocessing techniques (Fig. 4). This pattern was also observed for soil pH and exchangeable K, albeit with different magnitudes. Clay was the most sensitive soil property to preprocessing, where SNV and SNV followed by SGlstDer (overall median for both techniques being 0.86) were the 
7 

best methods for improving model performance. Among all combina­tions tested, it seems that BOC was the preprocessing step that had the lowest overall performance (median 0.84 ± IQR 0.19). Despite good overall performance across the 20 instruments, there was substantial variation especially for clay content (Fig. 4). Instrument #13 had the lowest Lin's CCC for OC (median 0.91 ± IQR 0.01) and clay (median 0.67 ± IQR 0.03). Another interesting outcome from this experiment was that instrument #16, the KSSL Bruker Vertex 70 used as the primary instrument in calibration transfer mode, outperformed most of the other instruments for OC (median 0. 96 ± IQR 0.02), clay (median 0.92 ± IQR 0.01), and exchangeable K (median 0.79 ± IQR 0.03). The variation among preprocessing techniques for this instrument was particularly low for OC and clay, indicating that other instruments may be more affected by spectral composition and quality assurance during scanning conditions. 
3.3. Model transfer performance 

One of the main interests of this study was to explore whether lab-to-
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Fig. 4. Internal calibration performance (Partial Least Square Regressions with a 10 times repeated 10-fold cross-validation) of all ring trial instruments (n = 20) 
through Lin's concordance correlation coefficient (CCC) with different spectral preprocessing. 

lab variability could be reduced by spectral preprocessing before 

executing model transfer and prediction. Model transfer from the KSSL 

library to spectra from the ring trial instruments resulted in OC 

achieving the best performance (Lin's CCC, overall median 0.90) 

(Fig. Sa). Soil pH ranked second (overall median 0.81) and clay yielded 

an overall performance of 0.76. The result for exchangeable K was the 

worst among the tested soil properties, i.e., an overall median for Lin's 

CCC of 0.71. In comparison, the overall median performance of the KSSL 

instrument #16 with the ring trial test samples (n = 20), with pooled 

model types and preprocessing strategies, reached a Lin's CCC of 0.96, 

0.84, 0.92, and 0.83 for OC, clay, pH, and exchangeable K, respectively 

(Supporting information Table S6). 
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An important result from this experiment is that among the most 

common preprocessing without spectral transformation, SNV always 

ranked amongst the best for all soil properties (Fig. Sa). For SNV, the 

10th percentile was the highest among the possible preprocessing when 

excluding SST, which indicates that the dissimilarity can be reduced to a 

certain degree when standard samples are not available, except for some 

very contrasting instruments. The median and 10th percentiles (in 

parenthesis) of SNV for OC, clay, pH, and K were 0.90 (0.75), 0.77 

(0.31), 0.81 (0.52), and 0.77 (0.42), respectively. 

For most soil properties (OC, pH, and K), spectral space trans­

formation (SST) largely reduced the spectral dissimilarities between the 

calibration and application domains (Fig. 4a). The median Lin's CCC 
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Fig. 5. Lin's concordance correlation coefficient (CCC) for (a) different pre­
processing and (b) model types, after performing calibration transfer from the 
KSSL soil spectral library on ring trial instruments' spectra. Left panels include 
all model types and instruments. Right panels include all spectral treatments 
and instruments. Medians not sharing any letter are significantly different by 
permutation test at the 5% significance level. The top box notch refers to the 
median, while the box bottom notch represents the 10th percentile. 

values for these soil properties were 0.93, 0.85, and 0.81, respectively. 

Similarly, the 10th percentile was the highest among all preprocessing 

techniques, indicating that the SST algorithm makes a robust correction 

before delivering the predictions even for the more extreme cases of 

spectra dissimilarity. 

An analysis of the sensitivity of model types (Fig. Sb) to spectral 

dissimilarity revealed that despite PLSR achieving a comparable per­

formance to Cubist for OC (median 0.90) and K (median 0.78), the 10th 

percentile indicates that this model type is more sensitive to extreme 

variations of calibration and application domain for OC (10th percentile 

0.57) and clay (10th percentile 0.15). Cubist models ranked first for OC 

(median 0.91), pH (median 0.84), and K (median 0.76), while MBL 

outperformed only for clay (median 0.81). Nevertheless, MBL was the 

least sensitive model type for OC (10th percentile 0.69) and clay (10th 

percentile 0.61). 

3.4. Metadata analysis 

It was possible to identify four main spectral clusters using the raw 

spectra (Supporting information Fig. SS). Most of the variation com­

pressed by the first principal component before running k-means was 

due to baseline offset, despite column-normalization of the pooled 

datasets and the remaining variance retaining further components (total 

of 7). Two manual adjustments were made to this initial clustering: 1) 

instrument #17 (Bruker Invenio with HTS-XT accessory) was moved 

from cluster 2 (C2) to cluster (C4); and 2) instrument #14 (Thermo 

Fisher Nicolet with a Pike DRIFT accessory) was moved from C4 to C2 

(Supporting information Fig. S6). After these two adjustments, cluster 1 

(Cl) was associated with one Bruker Alpha using the Bruker front­

reflectance accessory. Cluster 3 (C3) was associated with the remain­

ing five Bruker Alpha I and II instruments using the standard DRIFT 

accessory and one Vertex model also using a standard DRIFT accessory. 

Bruker Tensor, Vertex, and Invenio models all using the HTS-XT diffuse 

reflectance accessory and MCT detectors (n = 6) were grouped into 

cluster 4 (C4). In contrast, cluster 2 (C2) contained all the other man­

ufacturers (Perkin Elmer, Thermo Fisher, Agilent) using various stan­

dard DRIFT accessories (n = 6). Additional details of the instruments in 

each cluster can be found in Supporting information Tables Sl and S2. 

For metadata with at least two levels of category, the correspondence 

analysis revealed significant associations (after the chi-squared 
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independence test at a 5 % significance level) with the defined clusters. 

Although some metadata information was heavily unbalanced, general 

associations could be drawn from it, especially considering that the 

primary instrument of this study belonged to C4. The clustering analysis 

is fully characterized in the Supporting information. 

The calibration transfer performance assessed across the defined 

clusters revealed that the most consistent cluster was C4, which con­

tained the KSSL Bruker Vertex #16 and six other instruments with 

similar configurations (Fig. 6a). Lin's CCC median and 10th percentile 

(in parenthesis) of this group were 0. 93 (0.84), 0.81 (0.67), 0.88 (0.81), 

and 0.80 (0.58) for OC, clay, pH, and K, respectively. Cluster 2, on the 

other hand, had the poorest performance for all soil properties, reaching 

Lin's CCC of 0.81 (0.07), 0.69 (0.02), 0.71 (0.17), and 0.53 (0.07) for 

OC, clay, pH, and K, respectively. The remaining clusters had signifi­

cantly different performances but always fell between the range of C2 

and C4. 

Considering the previous results where SNV and SST stood out from 

the other preprocessing and both MBL and Cubist were less sensitive to 

instruments variability, a detailed analysis of these factors with the 

defined cluster confirmed that SST was most capable of reducing spec­

tral dissimilarity among calibration and application domains (Fig. 6b). 

SNV was not sufficiently efficient in dealing with the incompatibility 

issues present in C2, reaching an overall performance (both model types 

pooled together) of 0.83 (0.24), 0.78 (0.14), 0.65 (0.19), and 0.45 (0.09) 

for OC, clay, pH, and K, respectively. In contrast, spectral standardiza­

tion with SST was able to improve performance in C2 to 0.91 (0.78), 

0.77 (0.73), 0.84 (0.71), and 0.72 (0.56) for OC, clay, pH, and K, 

respectively. In comparison, C4, which includes six other instruments 

apart from the KSSL Bruker Vertex, achieved an SST performance of 0. 91 

(0.87), 0.76 (0.69), 0.88 (0.85), and 0.76 (0.73) for OC, clay, pH, and K, 

respectively. The small differences between median and 10th percentile 

suggests all instruments in cluster Cl, C3 and C4 performed well after 

SST, with a significant reduction of inaccuracy for C2. 

The instruments that had the highest influence on decreasing per­

formance due to contrasting spectral responses (Lin's CCC lower than 

group 10th percentile), both in the preprocessing and model types 

comparison, were in most of the cases instruments #9 (Thermo Fisher 

Nicolet), #12 (Thermo Fisher Nicolet), and #13 (Perkin Elmer FT-IR II) 

(Supporting information Fig. S18), all belonging to cluster C2. A great 

difference, in turn, is that SST significantly improved the performance 

for all soil properties, e.g., Lin's CCC of OC from 0.02 to 0.80 for in­

strument #13 (Perkin Elmer FT-IR II), when compared to using SNV 

only (Supporting information Table Sl5). However, for other in­

struments belonging to C2 that were not too contrasting to instrument 

#16 (instruments #4 [Perkin Elmer Spectrum 100], #5 [Agilent 4300], 

and #14 [Thermo Fisher Nicolet] with low Euclidean dissimilarity), the 

spectral transformation enhancement was not significant, with some soil 

properties being impaired by SST (Supporting information Fig. S18). 

4. Discussion

4.1. Internal calibration 

Internal calibration performance was generally good across all in­

struments (Fig. 4). This indicates that despite having contrasting spec­

tral responses for the same soil sample due to the particular 

characteristics of each instrument (Fig. 3a), models calibrated using 

their internal soil spectral library will deliver good estimates when new 

samples are measured by the same scanner and standard operating 

procedures (SOP). OC was the most consistent soil property that had 

minimal changes in performance regardless of the preprocessing and 

instrument employed (Fig. 4). In contrast, Clay was very sensitive to 

preprocessing (especially to BOC), and exchangeable K did not reach the 

same overall prediction capacity as OC, Clay, and pH. These overall 

performance findings are notably similar to a previous study that eval­

uated the MIR spectral range for the accurate measurement of soil 
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Fig. 6. Lin's concordance correlation coefficient (CCC) for (a) different spectra clusters after performing calibration transfer from the KSSL soil spectral library on 
ring trial instruments' spectra. Left panels include all model types, preprocessing, and instruments. Medians not sharing any letter are significantly different by 
permutation test at the 5% significance level. The top box notch refers to the median, while the box bottom notch represents the 10th percentile. MBL and Cubist 
model types, treated with SNV or SST preprocessing, are highlighted for different soil properties (b ). 

properties (Ng et al., 2022). Ng et al. (2022) grouped OC, Clay, and pH in 
a set of highly predictable soil properties (accuracy group A), while 
exchangeable K fell into the accuracy group C of a total of four levels (A, 
B, C, D). 

Of all the preprocessing techniques, BOC produced the most variable 
results likely because the correction was implemented in this study with 
a very naive approach. It consisted of finding the lowest value for each 
spectrum and subtracting it across the whole spectral range, i.e., BOC 
was only capable of handling baseline offset. Light scattering effects 
mostly caused by particle size slightly distort the spectral responses and 
have caused a shift in the position of the lowest value across the spec­
trum (Johnston and Aochi, 2018). This was the case with sample 44 for 
instrument #6 (Bruker Alpha I, the most impacted by BOC), where the 
lowest value of sample 44 (sand content= 99.61 %) deviated from the 
other samples' position (Supporting information Fig. Sl5). It seems that 
some instrument configurations may be more sensitive and propagate 
the shift of BOC into the calibrated models, especially if a model of a soil 
property of interest relies on the variation around the lowest value po­
sition. Soil minerals, for example, have a vibrational group around 
1200-970 cm -l that is related to Si-O-Si stretching (Johnston and Aochi, 
2018), the same region that was impacted by the lowest-value deter­
mination of BOC preprocessing of sample 44 in instrument #6 (Bruker 
Alpha I). This impact differed from the other preprocessing methods that 
found a way to manage sample 44 with extreme sand content and its 
impacts of light scattering before delivering a prediction. Therefore, 
users are recommended to be more cautious with the default operations 
of baseline offset correction in currently available spectroscopy software 
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and opt for methods that further account for scattering effects, such as 
SNV and multiplicative scatter correction (MSC). 

The variability of clay prediction in the internal performance eval­
uation was further verified by the importance of spectral features used 
by the models. Considering the VIP metric, which calculates the 
importance of each original wavenumber to the orthogonal projection of 
PLSR, it seems that clay was more sensitive to offset and scattering ef­
fects than other soil properties (Supporting information Fig. S16). While 
OC had similar important features shared by either BOC or SNV, SNV's 
important features for clay were largely more distinct than BOC. SNV 
spectral features had a larger amplitude of VIP across the whole spectral 
range, while BOC had an overall parabolic shape with features being 
more influential around the limits of the spectral range, a possible effect 
of remaining light scattering and multicollinearity over important 
vibrational groups that was not properly accounted by BOC (Barnes 
et al., 1989). 

Some instruments consistently outperformed others in the internal 
performance evaluation, especially instruments #16 (Bruker Vertex 70) 
and #18 (Burker Invenio S) for OC; instruments #16 (Bruker Vertex 70) 
and #17 (Burker Invenio R) for Clay; instruments #3 (Bruker Vertex 70) 
and #9 (Thermo Fisher Nicolet) for pH; and instruments #11 (Bruker 
Alpha II) and #16 (Bruker Vertex 70) for K (Fig. 4). This grouping is 
confirmed by the compact letter display from the permutation test, with 
all these instruments being at least classified with letter a (best) (Sup­
porting information Fig. S17). Instrument #16 is the Bruker Vertex 70 
from KSSL that follows rigid quality control and quality assurance for 
measuring MIR soil spectra (Method 7 A7; Soil Survey Staff, 2022). The 










